

presents

EmpowerHour

An Hour of Education and Empowerment

Women in Fiber Monthly Committee Meeting

Fiber Broadband Association believes the world is a better place when women's voices are heard. We believe companies are more successful when women are encouraged and rewarded to reach their full potential. We believe it is up to us to help identify, develop, and promote women in the Fiber Broadband industry as well as technology, telecommunications, construction and manufacturing. We pledge to use this forum to help women succeed in the Fiber Broadband industry.

Women in Fiber updates:

- New format for WIF monthly meetings
- Get involved Contact <u>Candy Riem</u> (candy.riem@teammidwest.com) for any questions or how to reach anyone below.
- FBA membership contact Danielle Lawrence
- Contact needed for a STEM org in Nashville contact <u>Libby Pawlick</u>
- Love to read? Unofficial launch of book summary group trial start -contact <u>Alexa</u> <u>Edens</u>
- Where are you headed next? Interested in hosting an event contact <u>Taylor Trewyn</u> or <u>Madison Carroll</u> or fill out this form: <u>https://bit.ly/41mtyh2</u>

WOMEN IN FIBER

- Celebrate amazing women contact Lori Ransbottom
- Join the conversation <u>LinkedIn</u> (www.linkedin.com/groups/12262312/) & <u>FBA</u>
 <u>Community</u> (www.community.fiberbroadband.org/)

Women in Fiber Update

Recognition Spotlight

Submit a nomination now

Spotligh

January 2025

Ashley has been an absolute heaven send ! She has brought a wealth of Knowledge to KGPCo with hands on experience in government and state spending for broadband infrastructure She is sharing her knowledge amongst all of us at KGPCo, ensuring that we are prepared to maximize our growth as a company, build solid relationships with partners and serve our customers with outstanding support! Thank you Ashley!

Nominated by:

• Rasjah Tolliver, Program Manager, KGPCo

Do you have an outstanding woman to nominate for the Spotlight? Contact Lori Ransbottom, Iransbottom@thinklynn.com

Ashley

Travers Vice President Strategic Partnerships

Libby Pawlick TDS Telecom

Kelly Weismann Clearfield, Inc

Stem & Partnership

presents

Fiber 101 Fiber Network ins & outs

Modern Communications

Morse, Telegraph 1830s-40s

Bell, Telephone 1876

Marconi, Wireless 1901

Charles Kao, STL 1965

The staff at Bell Labs Lasers, Cables, Systems

Donald Keck, Robert Maurer & Peter Schultz Corning, 1970

The famous inventors

FIBER TRANSITIONS THROUGH HISTORY

Multimode

fiber

fiber

Single-mode

DWDM

2000

FTTx

Solving bandwidth demands

Safety glasses must be worn

- Safety glasses are a MUST!
- Dispose of all scraps properly (most common danger when working with fiber
- NO food or drink in work
 space
- Follow instructions for various chemicals/cleaners. Alcohol is flammable.

KEVIET

NEVER look into a fiber unless you know NO light (Laser or LED) is present

It can focus the infrared light directly into your eye! Use a power meter to check it.

> Warning Laser hazard

SAFETY FIRST!

The adoption of any technology depends on having workable standards to ensure product compatibility.

Standards, Codes and Regulations

- ANSI American National Standards Institute
- EIA/TIA Electronic Industries Alliance/Telecommunications Industry Association
- NIST US National Institute of Standards and Technology
- **NEBS** Network Equipment Building Systems (Telcordia/Bellcore standard)
- TELCORDIA (Bellcore)

- NEMA National Electrical Manufacturer Association
- IEEE Institute of Electrical and Electronics Engineers
- SCTE Society of Cable Telecommunications Engineers
- NEC National Electric Code Electrical and fire safety

• **Check and follow your local government/codes for any regulations as they take precedence

What is "Fiber Optics"?

- Transmitting communications signals in the form of modulated light guided over hair-thin strands of glass or plastic.
- Signals, voice, data or video can be analog or digital form.

Used in communications, lighting, medicine, optical inspections and to make sensors.

We will concentrate on Communications.

INSIDE PLANT (ISP)

Central Office or HeadEnd "The TRANSMITTER"

Fiber Optic Sources

LEDs (Light Emitting Diode) for multimode fiber links (<250 MHz) OM1 & OM2 (62.5/125)

VCSELs (Vertical Cavity Surface Emitting Laser)for > 1 GHz multimode links OM3 & newer fibers

The restricted launch of the VCSEL provides greater power for more distance and bandwidth capabilities than LEDs

Fabry-Perot lasers (Light Amplification from the Stimulated Emission of Radiation) for singlemode links

DFB lasers for analog (CATV-RFOG) or DWDM singlemode

Class	Min Optical Link Budget	Max Optical Link Budget
А	5dB	20dB
В	10dB	25db
B+	13dB	28dB
С	15dB	30dB
C+	17dB	32dB

LED

F-P laser

Spectral Output

Wavelength

INSIDE PLANT (ISP)Moving out into the network

Active Cabinets

OUTSIDE PLANT (OSP)

PREMISE - MDU/MTU and Single-Family Units ~ Access Plant

MDU - Multi-Dwelling Units (residential~ Single-Mode

MTU - Multi-Tenant Units (business) ~ Single-Mode *Multi-Mode can/is used in structured cabling

Both MDU/MTU could be combined

The drop to the home/bus and premise install is the most time consuming and expensive portion to construct

Fiber Optic Detectors

- Silicon (Si) detectors for short wavelength links at 650 or 850 nm. Response issues after 900nm.
- Germanium (Ge) Good response from 700nm to 1550nm. Tends to be noisier than Gallium Arsenide types and responsitivity falls off close to 1550nm window
- Indium Gallium Arsenide Phosphide (InGaAsP) Operates well at longer wavelengths from 900nm to 1700nm
- Avalanche (APDs) photodetectors have higher gain and bandwidth than PIN Diodes.

Basic Fiber Theory

- Key terms to understand:
 - Total Internal Reflection
 - Attenuation
 - Absorption and Scattering
 - Bandwidth
- Dispersion
- Numerical Aperture (NA)
- Wavelength
- Reflections

https://youtu.be/jZOg39v73c4?si=Rhx79ZRcVes4W0bW

Total Internal Reflection

In 1841, Daniel Colladon, a professor at the University of Geneva, first demonstrated "light guiding" by focusing sunlight into a thin stream of water flowing through a hole in a water tank. When the light hit the forward edge of the water flow, he observed that the light rays were trapped in the water stream. This is now known as total internal reflection

 occurs when a core with a higher index of refraction is encapsulated by a cladding of a lower refractive index

Fiber's capability to collect light and transmit it along the fiber

Architectural Components

Fiber Manufacturing

- Core diameter
- Mode field diameter
- Cladding diameter
- Coating diameter
- Attenuation
- Dispersion
- Rayleigh backscatter

Preform manufacturing

- Vapor-Phase Axial Deposition (VAD) OFS
- Outside Vapor Deposition (OVD) Corning and Prysmian/Draka
- Plasma Chemical Vapor Deposition (PCVD) -Prysmian/Draka

A variety of fiber parameters are affected during the Depostion process., including attenuation uniformity

Sintering Attenuation is "locked" in

Draw

Effects fiber geometry, cut-off wavelength, fiber curl, PMD performance, reliability and coating strippability

https://youtu.be/XvBk2l2h5Zw?si=eJwbisYgTmAxsV4z

Test & Measurements Proof test, OTDR, Optical, Geometry and visual

Fiber Optic Spectrum

How light is defined Light is defined as "wavelength" that is measured in nanometers (billionth of a meter).

Utilizes the infrared region - 800nm to 1670nm Multimode: 850nm and 1300nm Singlemode: 1310nm and 1550nm

*Wavelength is often used interchangeably with lambda (λ) and color

Cut-Off Wavelength $\lambda = 1260$ nm

Fiber optics utilize wavelengths in the infrared region where absorption and scattering losses are lowest.

Fiber Optic Spectrum How light is defined

Windows - *i.e.*, *Bands*

Windows 1, 2 and 3 are original windows chosen for lowest attenuation

G.652

G.652C G.652D

Wavelength Band	Wavelength Range (nm)	Definition
O-band	1260-1360	Original band, PON upstream
E-band	1360-1460	Water peak band
S-band	1460-1530	PON downstream
C-band	1530-1565	Lowest attenuation, original DWDM band, compatible with EDFA fiber amplifiers, AM CATV
L-band	1565-1625	Low attenuation, expanded DWDM band
U-band	1625-1675	Ultra long wavelengths

Today we use the entire spectrum

How do we Define Fibers?

• The term single-mode tells us the fiber transmits one light path (mode) through a fiber. FTTx uses only single-mode fibers due to their low attenuation and high bandwidth.

• The term multimode tells us the fiber transmits in many modes (500+), with all info in all modes and arrive basically at the same time. The smaller the core, the more bandwidth capable.

- Fibers physical dimensions are made in micrometers (microns)
- FTTx fiber specifications are defined through International Telecommunications Union (ITU) standards
- There are many types of single-mode fibers (SMF) available and each has optical or physical attributes for different applications as you will learn

The Structure of an Optical Fiber - Glass is stronger than steel!

Typical optical fibers are composed of:

- CORE
- CLADDING
- PRIMARY BUFFER COATING Cladding
 - Removed prior to termination

Defining Multimode Fibers

- 5 Grades
 - Legacy OM1 and OM2 62.5µm using LEDs
 - OM2, OM3, OM4 and OM5 50µm using VCSELs @850nm
 - OM3 & OM4 are preferred/common
 - OM5 intended for data centers/high speed applications that require shortwave division multiplexing (SWDM)
- 3dB/km loss @850nm

		Bandwidth (MHZ*KM)		DISTANCE	LIMITATION	۱S
Fiber Type	Core/Cladding (µ)	Overfilled Launch LED source 850nm	Effective Modal Bandwidth LASER source 850nm	10GBASE- SR	40GBASE- SR4	100GBASE- SR10
OM1	62.5/125	200	N/A	33m/ 108ft		
OM2	50/125	500	N/A	82m/ 269ft		
OM3	50/125	1500	2000	300m/ 984ft	100m/ 328ft	70m/ 230ft
OM4	50/125	3500	4700	400m/ 1312ft	150m/ 492ft	100m/ 328ft
OM5	50/125	3500	4700	550m/ 1804ft	150m/ 492ft	100m/ 328ft

Defining Single-Mode Fiber Theoretically, infinite bandwidth

Small core 8-10µm only allows one mode of light

- Single-mode of light eliminates "modal dispersion" enabling ultra high bandwidth over long distances
- Low attenuation enables very long-distance support (typically< 0.2-0.3 dB/km @1550 nm)</p>
- Many types for different applications
 Chromatic dispersion
 - Polarization Mode dispersion

	-		
Description	IEC Type	ITU Spec	TIA
Standard SM fiber	B1.1	G.652	OS1
Cutoff-shifted fiber	B1.2	G.654	
Low water peak fiber	B1.3	G.652	OS2
Dispersion- shifted fiber	B2	G.653	
Non-zero dispersion shifted fiber	B4	G.655	
Bend- insensitive fiber		G.657	

*MFD may differ amongst these fiber types, especially bend insensitive (G.657) fibers. Use of an OTDR bidirectional testing will help resolve the issue.

TU-T G.652 The Most Popular SMF

- Sets the international standards for geometrical, mechanical and transmission attributes for singlemode fiber and cable.
- Originally developed in 1984
- Zero dispersion wavelength
 ~1310nm however, can be used at 1550nm wavelength
- ► 4 revisions all with same core size 8-10microns
 - ▶ G.652A, B, C and D
- ► Todays OS2 fibers are G.652C and G.652D
- ► G.652A and B rarely used due to water peak

Single-mode Fiber Coatings

Dimensions

200/250µm bare fiber (primary buffer coating w/color code) OS2

600µm tight buffer

900µm tight buffer OS1

ID basic 12 colors

TIA-598 Std

Ribbon

Layer(s) of matrix + 200/250µm primary

ID when coating is applied during manufacturing

ALL Coatings are removed prior to splicing to allow alignment with tight tolerance glass claddings.

Optical Fiber Color Code Chart

TIA - 598 Standard

TIA - 598 Standard

- Each fiber must be identified for end-to-end terminations along with splicing.
- Continuity of all fibers in the outside plant (OSP).
- Standardized in the TIA-598 "Optical fiber cable color coding" standard.
- Used to identify connector polish
- Identify premise cabling and jumpers.
- Buffer tubes also identified by same color sequence as fibers.

Fiber Optic Cable Types

Tight buffer (Simplex/Zipcord)

- ▶ 900µ, color coded
- Patchcords
- Distribution
 - > Dry conduit runs, plenum and riser
 - Bundled 900µ coated fibers
 - > Terminated in a panel/wallbox for protection
- Loose Tube
 - > 250µ loose fibers in a buffer tube
 - > 250µ "ribbonized" fibers
 - Typically used in OSP
 - Armored cable for direct buried
 - Requires furcating for termination

Breakout

- Tight buffered
- ▶ Rugged, individually reinforced
- Directly terminate connectors

Cable Jacket/Sheath Color Codes For Premise Application

Fiber Type	General Use	US Military
OM1	Orange	Slate
OM2	Orange	Orange
OM3/OM4	<mark>Aqua/</mark> Erica Violet	
OM5	Lime Green	
MM 100/140	Orange	Green
SM OS1/OS2	Yellow	Yellow
SM/PM	Blue	

PREMISE -Cable Ratings and Markings

- All premises cables must carry identification and ratings per the NEC (National Electrical Code) Article 770 or other local building codes. Cables without markings should never be installed indoors as they will not pass inspections!
- ANY cable with metallic MUST be properly grounded/bonded per local practice
- ► These ratings are:
 - ► OFN optical fiber non-conductive
 - ► OFC optical fiber conductive
 - ► OFNG or OFCG general purpose
 - ► OFNR or OFCR riser rated cable for vertical runs
 - OFNP or OFCP plenum rated cables for air-handling areas
 - ► OFN-LS low smoke density

Outside Plant Cable Construction

- Outside Plant Cables HDPE
 - Single-mode; Loose tube or Ribbon
 - Water-blocked gel-filled or dry
 - NOT fire rated for indoor use.
 - ► Can only be used up to 50 feet indoors (NEC 700)
 - ADSS
 - Distribution and transmission environments
 - Armor to prevent rodent damage and crush resistant
 - ANY cable with conductive material must be properly grounded/bonded per local practice,
 - Feed, Distribution and Drop cables
 - Indoor/Outdoor cable types available

https://youtu.be/fjRqGKU9cUU?si=-IRjzXvvaqIcs2im

Loose Tube Cable Construction

- Fibers are loose in tubes for isolation from installation stress
- Tubes contain several individual fibers (usually 12 - up to 36)
- Tubes and cable can be filled with waterblock.
- Tubes are color coded per TIA-598 Standard
- Ideal for OSP trunk applications and often pulled into conduit or innerduct
- Usually spliced and protected in splice trays and must use breakout kit to terminate
- About 1-2% longer than cable jacket markings

Fiber Tube filling compound Loose tube Cable filling compound PE inner sheath Water-blocking Material PSP PE outer sheath Central strength member

FLAT Ribbon Cable Construction

- Provides maximum density of fibers
 - Up to 864 Fibers in stacked footprint
- Ribbons have 12-36 individual fibers held by adhesive/matrix.
- Ribbons are stacked in cable "loose" tube or central tube
- Indoor or outdoor ratings
- Can be mass-spliced 12 fibers at a time
 - ► V-Groove only
 - Remove matrix for single splice and each 12F ribbon

200 Micron and Ultra High-Density Cables

Corning - RocketRibbon

Compatible with existing 250µ fibers 2x fiber in the same place - 24F in a 12F loose tube Fully compatible with fiber standards Special fiber holders may be needed for fusion machine

Fiber Density Comparison

- 3456 fiber cable based on 200 micron buffered fibers, 54% of the cable is fiber.
- Typical 144 fiber loose tube cable, which is about 14% fiber
- 144 fiber microcable which is about 36% fiber.

Collapsible/Rollable/Bonded Ribbon

► What is it?

- Intermittent bonds between fibers in a ribbon
- Ribbon can be rolled into a cylinder
- Enables cables with thousands of fibers
 - ► Today at 6912
- 200 micron bend insensitive fibers

Benefits

- Enables 2x fiber vs flat ribbon in a duct
- Ribbon splicing functionality
- Gel free

Air - Blown Fiber An Alternative To Cable

- Install "cable" with empty plastic tubes indoors or OSP
- Blow special fibers into the tubes
- Allows easy installation but requires special equipment
- Requires special fibers
- More expensive but allows flexibility, easy upgrades
- Not to be confused with "blown fiber" with microcables in microducts

Fiber optic terminations

- Connectors
 - Demountable terminations for fiber
 - Connect to transmitters and receivers

Splices

- Permanent termination of two fibers
- Mechanical for multimode or temporary restorations

Basic anatomy of a fiber optic connector

• Most ferrules are ceramic, but metal and plastics are used

Ferrule

• Connections use mating adapters to align fibers

Connector Color Codes

- ► Blue: Singlemode PC
- ► Green: Singlemode APC
- Beige: Multimode 62.5µ (orange jacket)
- Black: Multimode 50µ (OM2 orange jacket)
- Beige or Aqua/Erica Violet: Multimode
 50µ laser optimized (OM3 & OM4)
- ► Beige or Lime green: OM5
- **NEVER** mate different colors!
- Pay attention to cable jacket color

FC UPC

FC APC

HFOC

• Specifications

- Loss/Attenuation
 - 0.50dB (ITUT G.671)
 - 0.40dB (Telcordia GR-326-CORE)
- Repeatability
 - ≤0.2dB (Telcordia GR-326-CORE)
 - over 50 mating cycles
- Environment (temp, humidity, stress, etc.
 - Rugged (strain relief)
- Reliability
- Reflectance
 - 65dB APC polish
 - 55dB UPC polish
 - 25dB MM MPO
 - 55dB SM MPO
- Ease of termination
- Cost

Multi-Mode Fiber Connectors

Connector Endface Finishes

Field Termination - Fusion

Field Termination - Mechanical

Pre-polished fiber stub and mechanical splice

• Terminated with a precision cleave and index matching gel

Visual Fault Locator (VFL) to verify splice

• Typical loss 0.75dB

Epoxy/Polish

• Polishing techniques best done at factory environment

Splice on "factory terminated pigtail"

• A jumper will provide 2 "pigtails"

Splice On Connector "SOC"

• A variety of manufacturers offer Splice On Connectors

Causes of Loss

- Lowest loss requires perfect match between cores of two fibers.
- Losses may be caused by imperfect connectors, fibers or processes.
- Loss may also occur when mating fibers within an adapter.

VISUAL INSPECTION

Why it is so important!

Recent study by NTT-Advanced Technology, reported that 90% of Installers/technicians reported that issues with connector contamination was the greatest cause of network failure.

NEVER assume a "new" packaged connector is clean!!!

INSPECTION RESULTS

Ӿ Fail

MEASUREMENT NAME Fiber28

>

What Makes a BAD Fiber Connection

► A single particle mated into the core can cause significant

- Back Reflection
- Insertion Loss
- Equipment Damage

Endface pressure when mated is up to 50kpsi

....similar to water jet cutters

Fiber Optic Splices

- Permanent terminations for fiber when fusion spliced
- Temporary splice with mechanical means
- Fusion
 - Lowest loss
 - Lowest back reflection
 - Strongest
 - Faster
 - High capital cost
 - Low per splice cost
- Generally used for OSP construction

- Mechanical Splices
 - Minimal tooling
 - Low capital cost
 - High per splice cost
- Mostly used for restoration and MM premises cabling

Splice Loss per TIA - 568C standards

Fusion 0.3dB Typical loss <0.05dB

Mechanical splice loss 0.3dB Typical loss 0.15dB

PtP WDM FULL SPECTRUM

As technology grows...

The first 30 years used 1310/1550 nm. The next 30 will require the entire ITU spectrum.

- P2P and DWDM 1990's
- 12-channel CWDM, E-Band CWDM, GE/GPON, RFOG 2000's
- 10GPON 2016
- NG-PON2 2018
- 40GPON 2020
-and keeps growing

What is WDM? Wavelength Division Multiplexing

Wave Division Multiplexing is possible because multiple wavelengths of light can travel in the same fiber at the same time and in any direction because light has no mass.

Downstream traffic lanes

NG-PON2 Express			
NG-PON2 (10G)			
10G-PON			
25G-PON			
EPON (1G)			
XGS-PON (10G)			
NG-PON2 (10G)			
GPON (2.5G)			

CWDM Technology

Increasing capacity and increasing connections

- ITU G.694.2 CWDM Grid
- Full λ spectrum: 1270 thru 1610
- 20nm spacing
 - Typically 4/8/16 channel
- Requires SFP based optic transport platforms
- G.652 C & D for optimal performance
- Short-distance (i.e., metro or access networks), up to ~80km

DWDM - Dense Wavelength Division Multiplexing

Dense Wave Division Multiplexing can use multiple standards to determine wavelength spacing

ITU Grid Channels (100 GHz Spacing)						
Channel	Frequency (GHz)	Wavelength (nm)	Channel	Frequency (GHz)	Wavelength (nm)	
1	190,100	1577.03	38	193,800	1546.92	
2	190,200	1576.20	39	193,900	1546.12	
3	190,300	1575.37	40	194,000	1545.32	
4	190,400	1574.54	41	194,100	1544.53	
5	190,500	1573.71	42	194,200	1543.73	
6	190,600	1572.89	43	194,300	1542.94	
7	190,700	1572.06	44	194,400	1542.14	
8	190,800	1571.24	45	194,500	1541.35	
9	190,900	1570.42	46	194,600	1540.56	
10	191,000	1569.59	47	194,700	1539.77	
11	191,100	1568.77	48	194,800	1538.98	
12	191,200	1567.95	49	194,900	1538.19	
13	191,300	1567.13	50	195,000	1537.40	
14	191,400	1566.31	51	195,100	1536.61	
15	191,500	1565.50	52	195,200	1535.82	
16	191,600	1564.68	53	195,300	1535.04	
17	191,700	1563.86	54	195,400	1534.25	
18	191,800	1563.05	55	195,500	1533.47	
19	191,900	1562.23	56	195,600	1532.68	
20	192,000	1561.42	57	195,700	1531.90	
21	192,100	1560.61	58	195,800	1531.12	
22	192,200	1559.79	59	195,900	1530.33	
23	192,300	1558.98	60	196,000	1529.55	
24	192,400	1558.17	61	196,100	1528.77	
25	192,500	1557.36	62	196,200	1527.99	
26	192,600	1556.55	63	196,300	1527.22	
27	192,700	1555.75	64	196,400	1526.44	
28	192,800	1554.94	65	196,500	1525.66	
29	192,900	1554.13	66	196,600	1524.89	
30	193,000	1553.33	67	196,700	1524.11	
31	193,100	1552.52	68	196,800	1523.34	
32	193,200	1551.72	69	196,900	1522.56	
33	193,300	1550.92	70	197,000	1521.79	
34	193,400	1550.12	71	197,100	1521.02	
35	193,500	1549.32	72	197,200	1520.25	
36	193,600	1548.51	73	197,300	1519.48	
37	193,700	1547.72				

ITU-T G.694.1 Wavelengths Typically 8 or more wavelengths centered around 1550 nm

- C-Band 1530nm 1565nm (
- L-Band 1570nm 1625nm

Typical in networks

- .8 nm (100 GHz) Spacing
- 1.6 nm (200GHz) Spacing
- 160 channels possible on active networks (25GHz spacing)
- ➢ 40 channels max on passive

- Every network has a power budget
 - Transmitter output > receiver input
 - Measured in dBm
- Every network has a limit on cable plant loss
 - Fiber loss
 - Connector and splice loss
 - Installation stress (to be avoided)
 - Measured in dB

FTTX

Architectures and Topologies

Active, PON and WDM

- Point to Point Home Run
- Point to Multi Point
 - Centralized
 Distributed
- Bus
 - Distributed Taps

NETWORK TYPES

Active Optical Network Active E!

- Specified by the IEEE 802.3 standard
- Point-To-Point (P2P),
 - requires power at the switch
- Dedicated bandwidth to subscriber
 - 1Gbs/10Gbs option to each customer
- Up to 80km footprint*
- Not capable of RF overlay
- One and done future proof network

Passive Optical Network

- Specified by ITU G.984 standards
- 1 fiber using Passive Optical Components
- Point-To-Multipoint (P2MP)
 - Centralized and Distributed
- Many variations, GPON X-GS PON
- Shared bandwidth up to 32 subscribers*
 - 312Mb/s with 10Gb/s optics
- Up to 20km footprint*
- Can deliver RF overlay

Understanding PON Splitters

- Passive optical branching device
 - Planar Lightwave Circuit
 - ► Fused Biconic Tapered
- Bidirectional
- 1:2, 1:4, 1:8, 1:16, 1:32 configurations
- Cascade for desired ratio
- Loss 3 dB per 2x split plus excess loss (inefficiency)

Splitter	1:2	1:4	1:8	1:16	1:32
ldeal loss (dB)	3	6	9	12	15
Excess loss (dB,ma x)	1	1	2	3	4
Actual loss (dB, max)	4	7	11	15	19

SPLITTER DEPLOYMENT METHODS

HOME RUN One-to-One PON

- PON Splitters housed in the Central Office, Headend or Active Cabinets
- Requires fiber rich cables in the OSP.
- Most commonly used in dense urban applications.

SPLITTER DEPLOYMENT METHODS Centralized Field Splitting

- ▶ The Splitter is located in one location in the OSP.
 - ► Fiber Distribution Hubs.
 - ► Fiber Access Terminals
 - Plug and Play with MPO Feed
 - Splicing
- One location in an MDU/MTU

SPLITTER DEPLOYMENT METHODS Distributed Split

Cascaded Splitters

Distributed TAP

Upcoming Events

Upcoming industry events.

NCTA'S RTIME 2025 FEB 23-26 San Antonio, TX LTA ANNUAL FEB **MEETING &** 26-28 CONFERENCE New Orleans, LA NRECA TECH MAR **ADVANTAGE** 9-11 Atlanta, GA CONNECTED MAR AMERICA 2025 11-12 Dallas, TX ICA ANNUAL MAR **MEETING & EXPO** 24-26

Des Moines, IA

WOMEN IN FIBER

Join our mentoring program SUCCESS GOAL MOTIVATION COACHING MENTORING SUPPORT DIRECTION ADVICE TRAINING **WOMEN** IN FIBER

fiberbroadband.org/women-in-fiber-mentoring-program

Thank you for coming

Next Women in Fiber EmpowerHour and Committee Meeting March 19, 2025

